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:)The effects of self-generated magnetic field in laser
produced plasmas on the parametric decay of an extraordinary
electromagnetic wave into two upper hybrid plasmons is
examined for arbitrary magnetic field intensity and arbitrary
ratio k/k0L>hP?e.P° the presence of magnetic field, the linear
Landau dampiﬁg 1; greatly reduced and the spectrum of unstable

modes is significantly modified forAEEDQO.Z.
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I. INTRODUCTION

A dc magnetic field of several megaGauss is generated spontaneously
near the critical density layer of a laser irradiated plasma.l-
Because of the plasma expansion, the self-generated magnetic field
spreads out to the underdense regions of the plasma. It has been
measured expel.'imentallys"7 and in computer simulations.8 In the present
paper we study the effects of this magnetic field on the parametric
decay of the laser light into two plasma waves near the quarter critical
density.

The nonlinear process of an electromagnetic wave decaying into
two plasma waves in a homogeneous and unmagnetized plasma was first
studied by Goldman9 and Jackson.lo Goldman analyzed the process by
examining the Green function for Poisson's equation when the pump
induced energy of the particles is small compared to the thermal
energy. He showed the existence of the instability by keeping the
pump wavenumber finite since the dominant part of the nonlinear
susceptibility is proportional to it, and found the threshold for
the instability. Jackson used linearized Vlasov equation allowing
the pump intensity to be well above threshold. He showed that the
system is stable in the dipole approximation; however, if the pump
wavenumber is finite then the most unstable perturbations are those
for which the wave vector of the decay wave lies in the plane
determined by the propagation and polarization vectors of the pump
wave and bisects the right angle between them. He found a threshold

condition one order of magnitude higher than that calculated by
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Goldman. More recently, there has been renewed interest in the parametric

decay of laser radiation into two plasmons in an inhomogeneous plasma.

Rosenbluthll used WKB approximation to derive the threshold condition
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for the growth of the decay waves in order to overcome the convective

loss out of the three-wave resonance region. Lee and Kawlz showed

the absolute nature of this parametric instability. Liu and Rosenbluth13

used an alternative method to analyze the instability instead of the

usual WKB approximation and found the growth rate, the absolute instability
condition, the threshold condition imposed by plasma inhomogeneity,

and the saturation level of the plasma waves due to pump depletion.

Schuss14 considered the problem of an electromagnetic wave obliquely

v‘

incident on the density gradient and found that the threshold of the

absolute instability decreases as the angle between the density gradient

A

and the propagation vector approaches 90°. Experimentally, the decay of
electromagnetic wave into two plasmons has been observed through

measurements of plasma emissions at the three-halves harmonic 4

of the incident laser frequency from the quarter critical density

1ayer.15—17

In this work we investigate further the linear instability

TR

properties by including the effects of the self-generated dc magnetic |
field on the decay of laser light into two upper hybrid plasmons.

These effects might be relevant since the magnetic field changes

the plasma dispersive properties, for instance, if the wave vectors

of the decay waves are in the plane perpendicular to the magnetic field

the growth rate is finite even for kAD=1, A, is the Debye length,

D

contrary to the unmagnetized plasma where the decay waves are heavily

f Landau damped for kADQO.Z and the instability is turned off.
In Sec. II, we derive the system of nonlinear coupled equations
describing the decay of an extraordinary mode into two upper hybrid

. waves. The dispersion relation is solved to find the growth rate,

in Sec. III. In Sec. 1V, we present the conclusions and the numerical

“

L R S e RGO




&

results on the variation of growth rate with magnetic field intensity,

pump and decay wave wavenumbers, and the angle between these wave vectors.
II. NONLINEAR COUPLED EQUATIONS

Consider an electromagnetic wave

->
E b
e 0 <> > b
Eo(x,t) = [exp(iko-x-imot)+c.c.] (1) j
in a magnetized plasma with the uniform magnetic field Bg along the
z-direction. Assuming the electromagnetic pump to be an extraordinary

mode, we find electron oscillations along and perpendicular to the

direction of propagation with velocities to be
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where neseBg/mc, ng is the particle density of the unperturbed electron
fluid, e is the electron charge, and ¢ is the speed of light. The
electrostatic component of the electric field can be written in terms
of the electromagnetic component as
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The pump wave magnetic field is given by
c 2
B, = ko B, - (8)
The perturbed density fluctuations for the decay waves are
obtained from the equation of continuity which, after Fourier
analysis, gives
R RS PR A
(k) = ——+3—0— + 53—, 9
and * *
nlk_-v nk_-v n Kk v
n=n(§w)-—-9--——_-+l ’°+l°" (10)
e w 2 2

where i_-i—ﬁo and w_"w-wg according to the resonance conditioms.
The anti-Stokes component is considered off-resonant for this
parametric process. The perturbed velocities Vv and 3_ are calculated

from the equations of motion
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where T is the electron thermal enmergy, and £ and f_ are the perturbed
electric fields. Fourier analyzing Eqs. (11) and (12) for (t,m) and
(i;,w_), respectively, we get the equations for the components of v and
;_ which together with Eqs. (2)-(4) are substituted into Eqs. (9) and
(10) to get the expressions for the perturbed density oscillations

for the two decay waves. Substituting these expressions for n and n_
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into Poisson's equations for the perturbed electrostatic potentials

¢ and ¢_ we get the system of coupled equations

€ = - 2%3 nNL (13)
k
and
ed_= - 9—;3 o e (14)
k

where nNL and nfL are the nonlinear contributions to the density

perturbations,
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and M is the ion mass. The wavenumbers k, and k., , k; and k_,
refer to the components of k and f_ parallel and perpendicular
to the magnetic field, respectively. The ions are considered |
cold and unmagnetized since the frequencies of the pump and decay

waves are much larger than the ion cyclotron frequency. Equations (13)

and (14) can be rewritten as

edp=(aj+a), )é_ (18) ]
and

e_o_=(aj+al) )4 a9
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and z=2/z. ay and “'l'l are obtained from aj and o, , respectively, by

making the following interchanges

Q:i-(!}_[ (t,w)"_’(i_,(ﬂ_) ’ (io ’wo)H(-t !-mo) ’

(22)
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O"" 'G;l [(T(.,(D)H(i:_;w_)) (-lzovwo)ﬁ(-i:o)-wo)’ ;0-;‘;(*)] g (23)

Equations (18) and (19) comprise the system of coupled equations
describing the parametric decay of an extraordinary electromagnetic
wave into two electrostatic waves. The general dispersion relation

is obtained from them, straightforwardly,
ee_=(ajta] ) (aj+al ) . (24)

Equation (24) allows us to study the decay of an extraordinary
electromagnetic wave into
(1) two upper hybrid waves,
(ii) an upper hybrid and a lower hybrid wave, or
(iii) two lower hybrid waves.
The decay (i) occurs at the quarter critical density while channel (ii)
at the critical density layer. In the present paper we restrict ourselves

to channel (i).
I1II. GROWTH RATE

For the decay of an electromagnetic wave into two upper hybrid
plasmons, the linear dispersion relations (15) and (16), in the limit

k"<< k, become

2.2, 2,2 2
mp+9e+k Vg (25)
and
2l 2
w_-mp+ne+k_ve 5 (26)
and Eqs. (18) and (19) reduce to
-
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If we set ne--o in Eqs. (27) and (28) we get the same equations as Liu
and Rosenbluth in their limit L+~ where L is the density scale length.
For laser fusion parameters, Qe/wp<1, Eqs. (27) and (28) give the

dispersion relation

b (mz+{l2+k2 2)1[«., (w2+92+k2 2)1

: (29)
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The growth rate is found, from Eq. (29), to be
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IV. NUMERICAL RESULTS AND CONCLUSIONS

The growth rate decreases slowly with the increasing magnetic field
intensity, as seen from Fig. 1. The maximum growth rate is R
%-kolvol which holds for Qe-O, result that agrees with Liu and Rosenbluth.

The linear Landau damping for the upper hybrid waves with finite k"

is given by
Tr1/2 1 m2+k2vi i 5 mi
Y 2 (1 - 5 kyp ) exp (-
L 2 2.2 kv 2 2 2
k AD e Ve
2 2, B9
+-l k2p2 exp |- (wk e’ + exp (- (wk+9 ‘
2 "tre k2 2 k2 2
it Ve nVe
where
22 2L 8202
wk—wp+9e+k Ve (32)

i and e is the electron Larmor radius. From Eq. (31) we infer that if
K and i_ are in the plane perpendicular to the magnetic field the upper
hybrid decay waves cannot resonate with the electrons and, therefore,
the linear Landau damping rate vanishes in this case. It means that
the growth rate spectrum is significantly modified for kAD>0.2 as

i g compared to the unmagnetized plasma where we would expect the decay

waves to be strongly Landau damped. Figure 2 shows the growth
rate as a function of kAD for various pump powers. The growth rate 1
% is finite for all values of kAD due to the absence of collisionless é
damping, except for k-k0/2cos¢ for cos¢>0 when it vanishes, ¢ is the
angle between ib and k. The growth rate is always positive for cos¢<O.
According to Fig. 1, for laser fusion parameters, Qéx mp, the growth

rates for magnetized and unmagnetized plasmas have the same magnitude

for kAngo.Z. However, for kAD>0.2 they are substantially different
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due to the inclusion of Landau damping, as can be seen from Fig. 3.

For instance, for laser powers up to 1012w/cm2 the growth rate

vanishes for kAD>O.23 for an unmagnetized plasma process but it is
finite if the magnetic field is present. It is also possible to
see from Fig. 2 that as cos¢$ increases the values of kAD decrease
the maximum growth rate. This is better seen from Fig. 4 where ¢
plotted versus kAD for a constant growth rate. Figure 5 exhibits
variation of the growth rate with cos¢. The growth rate vanishes
0§2k. For k0>2k the growth rate is finite for all
values of cos¢. Figure 6 shows the proportionality of the growth

cos¢=k0/2k if k

rate with koAD.
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FIGURE CAPTIONS

Variation of the growth rate YAD/IVOI with the electron cyclotron
frequency for kOAD-O.OS (0.32 keV), kAD-0.002, and cos¢=0.0.
Growth rate yAD/|vo| expressed as a function of kXD for kOAD-O.OS,
02/6>=0.01, c08¢=0.0 (-=-), 0.6 (—), =0.6 (-0-0-), 0.9 (——-),
and -0.9 (-0-0-).

Variation of the growth rate Y/mp with kAD for kOXD-O.l (1.275 kev),

ﬂzlw§=0.01, for the following pump powers: (1) |v0|/ve-1.17
(10W/en’), cosp=0.6 (=++=++=), =0.6 (0-0-); (1) |vy|/v =
3.80 (10%%/cn?), cos4=0.6 ( —— ), 0.6 (~8~8~). The growth
rates follow curves (-----) for unmagnetized plasma.

Variation of kAD with ¢ (angle between EO and i) for a constant

0'D

The growth rate YAD/IVOI expressed as a function of cos¢p for

growth rate YAD/IVOI where k. =0.05 and Qi/mi-0.0I.

0D

2, 2
Variation of yAD/|v0| with ko), for Qe/mp-0.0l in the following

cases: (i) kAD-0.03, cos¢=0.0 (---), 0.7 (—00-), -0.7 (—);

k. k=005, QZ/w;‘;-o.m and kA=0.03 (-0-0-), 0.15 (—).

(i1) kAD-O.IS, c08¢=0.0 (=e=2=).
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